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1 INTRODUCTION

The study of the electronic spectra of diatomics has a
long history. Prominent diatomic spectra include the green
color of the Swan system of C2 that can be seen in a
Bunsen burner flame,(1) the emission of N2 in the aurora(2)

and the atmospheric A-band absorption of oxygen first
seen by Fraunhofer.(3) The spectra of TiO were seen in
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chemical Environment: Spectroscopy, Dynamics and Bulk Proper-
ties.  2002 John Wiley & Sons, Ltd

stars(4) well before any interpretation of the bands could
be made. The development of quantum mechanics and the
Born–Oppenheimer approximation(5) led to the quantitative
understanding of electronic spectra.

In this chapter, we begin with a discussion of the
basic principles of the electronic spectroscopy of diatomic
molecules.(6,7) The rest of the chapter is devoted to a
discussion of the ab initio calculation of molecular prop-
erties associated with the electronic spectra of diatomic
molecules. The calculated properties will be compared with
experimental observations for selected examples.

2 BORN–OPPENHEIMER
APPROXIMATION

The interpretation of the electronic spectra of diatomic
molecules begins with the nonrelativistic Hamiltonian in
the laboratory coordinate system, namely,

Ĥ = − h̄2

2mA

∇2
A − h̄2

2mB

∇2
B − h̄2

2me

N∑
i=1

∇2
i + V̂ (1)

for the usual electrostatic potential V̂ , nuclei A, B with
masses mA, mB and N electrons of mass me. Transforming
to the nuclear center-of-mass relative coordinate system and
removing the center-of-mass kinetic energy(8) results in the
new Hamiltonian,

Ĥ = − h̄2

2µ
∇2

r − h̄2

2me

N∑
i=1

∇2
i − h̄2

2(mA + mB)

×
N∑
i,j

∇i ·∇j + V̂ (2)
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with

µ = mAmB

mA + mB

(3)

being the reduced mass of the two nuclei, and r the vector
from nucleus A to nucleus B. The third term on the
right-hand side of equation (2) is the ‘mass-polarization’
term that has appeared because of the transformation from
laboratory to nuclear center-of-mass coordinates. The mass-
polarization term is generally neglected because it makes a
small contribution to the energy. Other choices of internal
coordinate systems are possible(8) [1] and then the mass-
polarization term in equation (2) takes on a different form.

The next step is the separation of electronic and nuclear
motion through the Born–Oppenheimer approximation.
The wave functions [ψn(ri; r), n = 1, 2, . . .], solutions of
the electronic Schrödinger equation

Ĥeψn(ri; r) = Un(r)ψn(ri; r) (4)

with

Ĥe = − h̄2

2me

N∑
i=1

∇2
i + V̂ (5)

form a complete set. The electronic Schrödinger equation is
solved for the N electrons as a function of ri at a particular
value of r, the relative internuclear coordinate. The resulting
wave functions, labeled by the index n, with the energy
eigenvalues Un(r) are parametric functions of r. The Un(r)
generate the usual potential energy curves for the states.

The wave functions needed to solve equation (2) are
written in the form

ψ =
∑
j

ψj (ri; r)χj (r) (6)

so that after premultiplying by ψ∗
k and integrating over the

electronic coordinates, the differential equation

− h̄2

2µ
∇2

r χk + [Uk + H ′
kk − E]χk = −

∑
j �=k

H ′
kjχj (7)

appears, in which the H ′
kk are the diagonal matrix elements

of the mass-polarization operator as well as of some addi-
tional derivatives with respect to nuclear coordinates from
the r-dependence of the electronic wave functions. Because
the set of coupled differential equation (7) is difficult to
solve, further approximations need to be made.

In the ‘clamped-nuclei’ approximation, both the nondi-
agonal terms (H ′

kj ) on the right-hand side of equation (7)
and the diagonal correction (H ′

kk) are neglected to yield the

simple equation

− h̄2

2µ
∇2

r χk + Ukχk = Eχk (8)

for nuclear motion within the kth electronic state on the
potential energy surface. The effects of mass polariza-
tion and the Born–Oppenheimer approximation can be
accounted for by using perturbation theory to correct for
the neglected diagonal (H ′

kk) and off-diagonal (H ′
kj ) terms

in equation (7).

3 SEPARATION OF VIBRATION AND
ROTATION

Equation (8) for nuclear motion accounts for the vibrational
and rotational motion of a diatomic molecule [1]. For 1�+
states, the separation of vibration and rotation is simple,
because the square of the gradient operator for the relative
coordinates can be written as

∇2
r = ∂2

∂r2
+ 2

r

∂

∂r
− 1

h̄2r2
Ĵ2 (9)

in which Ĵ2 is the square of the rotational angular momen-
tum operator,

Ĵ2 = −h̄2
(

∂2

∂θ2
+ cot θ

∂

∂θ
+ 1

sin2 θ

∂2

∂φ2

)
(10)

The Ĵ2 operator commutes with the Hamiltonian operator
in equation (8) and has the governing equation

Ĵ2YJM(θ, φ) = J (J + 1)h̄2YJM(θ, φ) (11)

in which the YJM (θ,φ) functions are the spherical harmon-
ics. The variables θ and φ are the polar and azimuthal angles
that define the orientation of the internuclear axis with
respect to the laboratory coordinate system. The nuclear
motion equation (8) is exactly separable, with

χ(r) = S(r)
YJM(θ, φ)

r
(12)

The resulting differential equation for radial motion (vibra-
tion of the nuclei) is

− h̄2

2µ

d2S

dr2
+

[
U(r) + J (J + 1)h̄2

2µr2

]
S = ES (13)

with the centrifugal potential

Ucent(r) = J (J + 1)h̄2

2µr2
(14)
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added to the rotationless potential U(r) for a particular
electronic state. Note that although the reduced mass was
defined earlier (equation 3) using nuclear masses, it is
customary to use atomic masses when computing µ.

The solution of equation (13) for the vibration–rotation
energy levels requires a particular potential energy func-
tion U . Given U , equation (13) can be solved numerically.
Unfortunately, the electronic states of real molecules are
not represented by any known analytical potential func-
tions, although many ingenious approximate functions(9)

have been created. A power series expansion, however, can
represent any potential on a given interval to arbitrary preci-
sion. The customary potential function, due to Dunham,(10)

is

U(ξ) = a0ξ(1 + a1ξ + a2ξ
2 + · · ·) (15)

in which ξ = (r − re)/re. Dunham(10) solved equation (13)
with potential (15) using the semiclassical quantization
condition,(7) and generated the double power series expres-
sion

EvJ =
∑

Yij

(
v + 1

2

)i

[J (J + 1)]j (16)

for the vibration–rotation energy levels for a 1�+ electronic
state.

The Dunham expression for the vibration–rotation energy
levels is equivalent to the usual Herzberg(6) energy level
expressions,

G(v) = ωe

(
v + 1

2

) − ωexe

(
v + 1

2

)2

+ ωeye

(
v + 1

2

)3 + · · · (17)

Fv(J ) = BvJ (J + 1) − Dv[J (J + 1)]2

+ Hv[J (J + 1)]3 + · · · (18)

Bv = Be − αe

(
v + 1

2

) + γe

(
v + 1

2

)2 + · · · (19)

Dv = De + βe

(
v + 1

2

) + · · · (20)

by making the correspondences Y01 = Be, Y10 = ωe, Y11 =
−αe, and so forth.

For a 1�+ state, labeled by n, the total energy for a given
rovibronic state |nvJ 〉 is given by

EnvJ = Te(n) + G(v) + Fv(J ) (21)

EnvJ = Te(n) +
∑

Yij

(
v + 1

2

)i
[J (J + 1)]j (22)

The energy level expression for the general singlet case
(1�) requires only the addition of �-doubling to account for
the small splitting of the double orbital degeneracy.(6) The
nonsinglet case is considerably more complicated, however,

and the specialized literature needs to be consulted for the
energy levels of the general 2S+1� state.(7,11)

4 ELECTRON SPIN AND NUCLEAR SPIN

The nonrelativistic Schrödinger equation is also not com-
plete,(12) and additional terms need to be added to equa-
tion (1) and therefore will also appear in equations (5)
and (8). The largest additional term is needed to account
for the presence of electron spin, Ĥes. This term includes
spin–orbit coupling (electron spin interacting with the mag-
netic fields created by electron motion), spin-rotation cou-
pling (electron spin interacting with the magnetic fields
created by nuclear motion), and spin–spin coupling (inter-
action of the magnetic moments of different electrons),
namely,

Ĥes = Ĥso + Ĥsr + Ĥss (23)

The effects of Ĥes, sometimes called fine structure, are
present in nonsinglet states.

A much smaller additional term is needed to account
for the effects of nuclear magnetic and electric moments,
Ĥhfs, and is called hyperfine structure. A nuclear magnetic
moment can interact with the other magnetic moments in
a molecule (i.e., interaction with electron spins and their
orbital motion as well as with other nuclear spins and
their nuclear motions). All nuclei with I ≥ 1 have elec-
tric quadrupole moments (because of nonspherical nuclear
charge distributions) that can be oriented by the electric
field gradients present in molecules leading to nuclear
quadrupole hyperfine structure. Thus, the hyperfine cou-
pling Hamiltonian consists of two parts and can be written
as

Ĥhfs = Ĥns + Ĥquad (24)

in which Ĥns is the nuclear spin magnetic moment part
and Ĥquad is the quadrupolar moment part of the hyperfine
Hamiltonian.

5 NOTATION

The notation for electronic states of diatomic molecules(7)

parallels that for atoms, with 2S+1�� used in place of
2S+1LJ and

� =
N∑

i=1

λi (25)

S =
N∑

i=1

si (26)
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in which λi is the projection of the ith electronic orbital
angular momentum �i onto the internuclear axis. Notice
that

L =
N∑

i=1

�i (27)

is no longer a constant of the motion, and that this equation
has been replaced by equation (25). Only the projection
�h̄ of L along the internuclear axis is quantized (when
spin–orbit coupling is small).

For a diatomic molecule, the total angular momentum
(exclusive of nuclear spin) is the vector sum of orbital
(L), spin (S), and rotational (R) angular momenta, J =
L + S + R (Figure 1). The total angular momentum J has
a projection of �h̄ units of angular momentum along the
molecular axis and (as always) MJ along the space fixed
Z-axis (Figure 2). The various angular momenta and their
projections onto the molecular axis are summarized in
Table 1. The � quantum number is sometimes appended
as a subscript to label a particular spin component.

For � > 0, there is a double orbital degeneracy corre-
sponding to the circulation of the electrons in a clockwise
or counterclockwise direction. This degeneracy remains for
� > 0, and it is customary to use |�| to represent both
values. For example, a 2� state has 2�3/2 and 2�1/2
(� = 1, � = ±1/2) spin components. Notice that there
are always 2S + 1 spin components, labeled by their |�|
values except when S > |�| > 0. In that case, there is a
notational problem in labeling the 2S + 1 spin components,
so � = |�| + � is used instead of |�|. For example, for a
4� state (S = 3/2, � = 1) the spin components are labeled
as 4�5/2, 4�3/2, 4�1/2, and 4�−1/2. The electronic states
of diatomic molecules are also labeled with letters: X is

A B

Ω

Λ Σ

J
R

L
S

Figure 1. Angular momenta in a diatomic molecule.

X

Y

Z

z

A

B

MJh

Ωh

J

Figure 2. Components of the total angular momentum J (exclu-
sive of nuclear spin) in the laboratory (X,Y,Z) and molecular
(x, y, z) coordinate systems.

reserved for the ground state, while A, B, C, and so on, are
used for excited states of the same multiplicity (2S + 1) as
the ground state, in order of increasing energy. States with
a multiplicity different from that of the ground state are
labeled with lowercase letters a, b, c, and so on, in order
of increasing energy. This convention is illustrated by the
energy level diagram of the low-lying electronic states of
O2 in Figure 3. An alternate convention widely adopted by
the quantum chemistry community is to label states of the
same symmetry in order of increasing energy by integers
starting at 1 for the state of lowest energy for a particular
symmetry.

The possible electron transitions among the energy levels
are determined by the selection rules:

1. �� = 0, ±1. The transitions � − �, � − �, � − �,
and so forth, are allowed.

2. �S = 0. Transitions that change multiplicity are very
weak for molecules formed from light atoms, but as
spin–orbit coupling increases in heavy atoms, transi-
tions with �S �= 0 become more strongly allowed.

3. �� = 0, ±1.

Table 1. Angular momenta in diatomic molecules.

Angular Projection on Molecular Axis
Momentum (units of h̄)

J � = (� + �)

L �

S �

R —
N = R + L �
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Figure 3. The low-lying electronic states of the O2 molecule.
(From Spectra of Atoms and Molecules by Peter F. Bernath,(7)

copyright 1995 by Oxford University Press, Inc. Used by permis-
sion of Oxford University Press, Inc.).

4. �+ − �+, �− − �−, but not �+ − �−. This selection
rule is a consequence of the µz transition dipole
moment having �+ symmetry. Notice that �+ − �

and �− − � transitions are both allowed.
5. g ↔ u. The transitions 1�g − 1�u, 1�u

+ − 1�g
+, and

so forth, are allowed for centrosymmetric molecules.

For example, transitions among the first three electronic
states of O2 (b1�g

+, a1�g, and X3�g
− in Figure 3) are

forbidden, but the B3�u
− − X3�g

− transition is allowed.
The B − X transition of O2, called the Schumann–Runge
system, is responsible for the absorption of UV light for
wavelengths less than 200 nm in the earth’s atmosphere.

The subscripts g (gerade) and u (ungerade) are only used
to classify the electronic states of homonuclear molecules.
The electronic wave function is either even (g) or odd (u)
with respect to the inversion operation in the molecular
frame, that is,

îψe = ±ψe (28)

The superscript + and − signs are attached to � states
of all diatomics depending on the results of a reflection
operation,

σ̂vψe = ±ψe (29)

All diatomics have an infinite number of planes of sym-
metry containing the nuclei. For states with � > 0, the +

or − superscripts are redundant because one of the two
�-components is always + and the other −.

Although both the b1�g
+ − X3�g

− (A-band) and
a1�g − X3�g

− transitions are forbidden by electric dipole
selection rules, they are weakly allowed by a magnetic
dipole mechanism.

6 FRANCK–CONDON PRINCIPLE

An electronic transition is made up of vibrational bands,
and each band is in turn made of rotational transitions.
In condensed media, the rotational structure is generally
suppressed although, for example, in superfluid liquid He
droplets, nearly free rotation occurs.(13) The vibrational
bands are labeled as v′ –v′′ (single prime denotes upper
states and double primes lower states), and an electronic
transition is often called a band system. The vibrational
band positions in an electronic transition are given by

ν̃v′v′′ = E′ − E′′ = Te + ω′
e

(
v′ + 1

2

) − ω′
ex

′
e

(
v′ + 1

2

)2

+ · · · − ω′′
e

(
v′′ + 1

2

)
+ ω′′

ex
′′
e

(
v′′ + 1

2

)2 + · · · (30)

in which Te is the energy separation between the potential
minima of the two electronic states.

The intensities of the bands are determined by three fac-
tors: the intrinsic strength of the transition, the populations
of the levels involved, and the Franck–Condon factors.
The derivation of the quantum-mechanical version of the
Franck–Condon principle starts with the transition dipole
moment (ignoring rotation),

Mev =
∫

ψ∗
n′v′µψn′′v′′ dτ (31)

in which µ is the electric dipole moment operator.
Within the Born–Oppenheimer approximation, the vibra-

tional and electronic parts of the transition moment become

Mev =
∫

S∗
v′(r)

(∫
ψ∗

n′µψn′′ dτe

)
Sv′′(r) dr (32)

The integral in the center over electronic coordinates is
called the transition dipole moment function R(r) and is
a parametric function of the internuclear distance r . The
function can be expanded about the lower state equilibrium
bond length as

R(r) = Re + ∂R
∂r

∣∣∣∣
re

(r − re) + · · · (33)
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so that substitution of equation (33) into equation (32)
leads to

Mev = Re

∫
S∗

v′(r)Sv′′(r) dr

+ ∂R
∂r

∣∣∣∣
re

∫
S∗

v′(r − re)Sv′′ dr + · · · (34)

Keeping only the first term on the right-hand side of equa-
tion (33) leads to the quantum-mechanical Franck–Condon
principle for the intensity I of a v′ − v′′ band as

Iv′v′′ ∝ |Re|2 ×
∣∣∣∣∫ S∗

v′Sv′′ dr

∣∣∣∣2

= |Re|2qv′v′′ (35)

The square of the vibrational overlap integral between the
two electronic states, qv′v′′ , is called a Franck–Condon
factor. There is an implicit J dependence that can be
included by using the appropriate Sv(r) solved for a
particular J value using equation (13).

7 ROTATIONAL LINE STRENGTHS

For singlet–singlet electronic transitions, rovibronic line
intensities are determined by the population of the levels,
the Franck–Condon factors and the rotational line strength
factor SJ ′′ (usually called a Hönl–London factor). In
particular, the total power PJ ′J ′′ (in W/m3) emitted by an
excited rovibronic state |nv′J ′〉 is

PJ ′J ′′ = 16π3

3ε0c
3

nJ ′

(2J ′ + 1)
ν4qv′v′′ |Re|2SJ ′′ (36)

in which nJ ′ is the excited state population in molecules
per m3, ν is the transition frequency in Hz, qv′v′′ is
the Franck–Condon factor, Re is the electronic transition
dipole moment in coulomb meters (C m) and SJ ′′ is the
dimensionless Hönl–London factor.(14)

For allowed one-photon singlet–singlet transitions, there
are three cases:

1. �� = 0, �′′ = �′ = 0. 1�+ − 1�+ (or 1�− − 1�−)
transitions have only P and R branches (i.e., �J =
±1); 1� − 1� transitions are referred to as parallel
transitions, with the transition dipole moment lying
along the z-axis.

2. �� = ±1. 1� − 1�+, 1� − 1�, 1� − 1�, and so on,
transitions have strong Q branches as well as P and R

branches (i.e., �J = 0, ±1). These transitions have a
transition dipole moment perpendicular to the molec-
ular axis, and hence are designated as perpendicular
transitions.

3. �� = 0, �′ = �′′ �= 0. Transitions such as 1� − 1�,
1� − 1�, and so on, are characterized by weak Q

Table 2. Hönl–London factors.

�� = 0

SR
J = (J ′′ + 1 + �′′)(J ′′ + 1 − �′′)

J ′′ + 1

SQ
J = (2J ′′ + 1)�2

J ′′(J ′′ + 1)

SP
J = (J ′′ + �′′)(J ′′ − �′′)

J ′′
�� = +1

SR
J = (J ′′ + 2 + �′′)(J ′′ + 1 + �′′)

4(J ′′ + 1)

SQ
J = (J ′′ + 1 + �′′)(J ′′ − �′′)(2J ′′ + 1)

4J ′′(J ′′ + 1)

SP
J = (J ′′ − 1 − �′′)(J ′′ − �′′)

4J ′′
�� = −1

SR
J = (J ′′ + 2 − �′′)(J ′′ + 1 − �′′)

4(J ′′ + 1)

SQ
J = (J ′′ + 1 − �′′)(J ′′ + �)(2J ′′ + 1)

4J ′′(J ′′ + 1)

SP
J = (J ′′ − 1 + �′′)(J ′′ + �′′)

4J ′′

branches (for small �) and strong P and R branches
(�J = 0, ±1).

The rotational line strength factors(6) are given in Table 2
for these various cases. Note that for the Hönl–London
factors in Table 2, there is an implicit definition of the form
of the electronic transition dipole moment because of the
separation into electronic, vibrational, and rotational parts.
The values in Table 2 assume µz and µx ± iµy are used for
the components electronic transition dipole moments in the
molecular frame. Note, however, that if the recommended
form(16) of (µx ± iµy)/

√
2 for the perpendicular part is

used instead, then the �� = ±1 Hönl–London factors in
Table 2 need to be multiplied by 2 in order to keep the
overall |Mevr |2 the same.

The line intensities for nonsinglet transitions have to
be handled on a case-by-case basis and there are no
general formulas.(11,15,16) Factors for forbidden transitions
and multiphoton line strengths also often need to be derived
for particular cases, although some of the formulas are
available in the literature.(17)

8 SPECTROSCOPIC CONSTANTS AND
POTENTIAL ENERGY CURVES FROM
AB INITIO CALCULATIONS

The primary spectroscopic constants for the electronic states
of diatomic molecules are the dissociation energy, D0, the
equilibrium bond length, re, the equilibrium vibrational
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frequency, ωe, and the energy (term value) of the state
relative to the ground state, Te.

Ab initio calculations using a number of widely available
computer codes can provide useful estimates of the primary
molecular constants. These quantities are most easily cal-
culated for ground states (Te = 0, by definition), by using
the analytical first derivative of energy with respect to r to
locate the minimum on the potential curve. The harmonic
vibrational frequency is then calculated from the second
derivative of energy with respect to r , evaluated (numeri-
cally or analytically) at re. The calculation of dissociation
energies is also (in principle) straightforward for a molecule
AB, with

D0 = EA + EB − EAB − ωe

2
(37)

using total energies and correcting for the zero-point vibra-
tional energy, ωe/2. The calculation of reliable dissociation
energies, however, is relatively difficult because the atoms
A and B are sufficiently different in electron distribution
from the molecule AB that errors in the calculations of
EA, EB, and EAB tend not to cancel when the dissociation
energy is computed.

More sophisticated calculations of spectroscopic proper-
ties are best carried out by computing a number of points
on the potential surface, fitting the points to a function,
and then solving the one-dimensional Schrödinger equation
(equation 13) numerically using a program such as LEVEL
[2].(18) The computed rovibrational levels can be fitted with
the usual energy level expressions, (17) to (20), to extract
the spectroscopic constants, including centrifugal distor-
tion constants, (e.g., Dv) anharmonic vibrational constants
(e.g., ωexe) and vibration–rotation interaction constants
(e.g., αe). An equivalent procedure fits the calculated poten-
tial points to the Dunham potential (equation 15). Dunham
relationships(10) are then used to convert the set of ai to the
corresponding set of spectroscopic Dunham Yij parameters
(see equation 16).

For example, Lee and Dateo(19) calculated the ground
state potential energy curve of CN (X2�+) and
CN−(X1�+) with large augmented correlation-consistent
basis sets (up to aug-cc-p-V5Z) and the CC, coupled cluster
with single, double and partial triple excitations (CCSD(T)),
technique for electron correlation. The comparison of
experiment(20) and theory for CN (CN− is unknown) is
given in Table 3.

Calculations are now sufficiently reliable (very large
basis sets and extensive correlation) that they can be limited
by the breakdown of the Born–Oppenheimer approxima-
tion. The simplest correction that can be computed is the

Table 3. Comparison of calculated and observed spec-
troscopic constants for X2�+ state of CN (in cm−1).

Constant ‘Best’ theorya Experimentb

re(Å) 1.1739 1.17180749(21)
B0 1.88435 1.89109067(19)
Be 1.89294 1.89978316(67)
αe 0.01720 0.0173720(12)
ωe 2067.7 2068.648(11)
ωexe 12.93 13.097(68)
�G1/2 2041.8 2042.41851(68)

aT.J. Lee and C.E. Dateo (1999) Spectrochim. Acta A, 55,
739.(19)

bC.V.V. Prasad and P.F. Bernath (1992) J. Mol. Spectrosc.,
156, 327.(20)

‘diagonal correction’ in equation (7), that is,

�E = 〈ψn|T̂N |ψn〉 = − h̄2

2
〈ψn|

∑
α

1

mα

�2
α |ψn〉 (38)

This is simply the first-order correction of the nuclear
kinetic energy operator using the electronic wave func-
tion; in this form no additional mass-polarization terms are
needed.(21) When the Born–Oppenheimer separation was
made, the electronic Schrödinger equation was derived by
neglecting T̂N . Martin,(22) for example, has found that this
diagonal (adiabatic) correction makes a nonnegligible con-
tribution to the calculation of the spectroscopic constants
for H2, LiH, BeH, and BH. He confirms that atomic masses
(not nuclear masses) should be used. Basically, the use of
atomic masses compensates for some of the missing non-
diagonal (nonadiabatic corrections) for Born–Oppenheimer
breakdown.

For H2, the nondiagonal corrections have been com-
puted to high accuracy; for example, Wolniewicz(23) has
computed the Born–Oppenheimer potential of H2 using a
flexible expansion in elliptical coordinates. The diagonal
Born–Oppenheimer corrections to the potential were cal-
culated, and a variation-perturbation method used to com-
pute the nonadiabatic corrections to the vibration–rotation
energy levels of H2, D2, T2, HD, HT, and DT. The errors
in the energy level differences are believed to be on the
order of 0.001 cm−1. Alternative approaches to the calcula-
tion of nonadiabatic energies of H2 include diffusion Monte
Carlo(24,25) and the use of explicitly correlated Gaussian
functions.(26) These methods are all rather specialized (i.e.,
suitable for H2), however, and are not easily generalized to
other systems.

Diagonal corrections to the Born–Oppenheimer approxi-
mation are relatively easy to compute(22) and they result in
a mass-dependent change to the potential curve. Nonadia-
batic corrections, however, couple excited 1�g states to the
ground X1�g

+ state (in the case of H2) and this interaction
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depends on v and J . Unfortunately, the nonadiabatic
corrections are generally comparable in size to the sim-
ple diagonal corrections (see Reference 27). Schwenke(28)

has recently carried out an ab initio implementation of the
Bunker and Moss(29) formulation of the nonadiabatic cor-
rections. This approach seems to be generally applicable to
diatomic and small polyatomic molecules.

The calculation of excited-state potential curves of
diatomics is more difficult than for the ground state. Taking
differences of orbital energies from a Hartree-Fock self-
consistent field, (HF-SCF), calculation is not a suitable or
even correct approach. The best simple procedure (which
in spite of its name does not include any electron corre-
lation) is called the configuration interaction singles (CIS)
approach. Excited states are represented by the optimum
linear combination of Slater determinants constructed from
the singly excited orbitals of the HF ground state (see Ref-
erence 30). More realistic calculations, however, need to
include electron correlation and the optimization of orbitals
to represent excited states better.

The multiconfiguration self-consistent field (MC-SCF)
method is a reliable approach to the calculation of low-
lying potential energy curves of diatomic molecules (see
References 31, 32). The electronic wave function is approx-
imated as a linear combination of Slater determinants,
and the orbitals as well as the mixing coefficients of
the Slater determinants, are optimized at the same time.
A very useful version of the MC-SCF approach is to
include all determinants constructed from the ground state
by exciting the valence electrons (i.e., valence electrons dis-
tributed among the valence orbitals in all possible ways).
This complete-active-space self-consistent field (CASSCF)
method provides excellent starting wave functions for all
of the low-lying valence states. Additional electron corre-
lation can be added by configuration interaction (CI). For

transition metal-containing diatomics, the CASSCF-CI pro-
cedure gives good predictions of spectroscopic constants
including Te.

An example of a CASSCF calculation followed by a mul-
tireference CI is the work of Langhoff and Bauschlicher(33)

on NbN. In this case, they carried out a ‘state averaging’,
that is, a single common set of optimized molecular orbitals
was used for each multiplicity (singlet, triplet, and quintet).
The Nb atom core electrons were not treated explicitly,
but their effect was described using a relativistic effective
core potential.(34) Figure 4 displays the calculated poten-
tial curves. All of the low-lying states of NbN are now
known,(35) and an experimental–theoretical comparison is
made in Table 4. The agreement is rather good: ±0.02 Å
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Figure 4. Calculated potential energy curves for the low-
lying electronic states of NbN (after S.R. Langhoff and C.W.
Bauschlicher (1990) J. Mol. Spectrosc., 143, 169).(33)

Table 4. Comparison of calculated and observed spectroscopic constants for NbN.

Theorya Experimentb

State re (Å) ωe (cm−1) Te (cm−1) re (Å) �G1/2 (cm−1) Te (cm−1)

X 3� 1.675 1008 0 1.659 1034 0
A 3�− 1.684 999 4925 1.669 1017 4949
B 3� 1.684 946 16 753 1.671c — 16 518c,d

C 3� 1.684 934 18 192 1.669 980 17 049
a 1� 1.667 932 3999 1.649 1063 4812
b 1�+ 1.683 976 4909 1.663 1017 5454
c 1� 1.682 978 10 201 1.665c — 9512
d 1�+ 1.674 1057 12 878 1.656 1041 13 511
e 1� 1.689 911 18 939 1.672c — 18 457

aS.R. Langhoff and C.W. Bauschlicher (1990) J. Mol. Spectrosc., 143, 169.(33)

bR.S. Ram and P.F. Bernath (2000) J. Mol. Spectrosc., 201, 267.(35)

cr0 values.
dY. Azuma, G. Huang, M.P.J. Lyne, A.J. Merer, and V.I. Srdanov (1994) J. Chem. Phys., 100, 4138.(36)
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for re, 50 cm−1 for ωe and 1000 cm−1 for Te, even without
explicitly including the effects of spin–orbit coupling.

An alternative approach to excited-state calculations
is the equation-of-motion coupled-cluster (EOM-CC) me-
thod,(30) which is related to propagator methods and mul-
tireference CC methods. The EOM-CC method works
well for the calculation of properties of excited states
(including ionization potentials) of diatomics such as BH,
CH+ and C2.(37)

9 CALCULATION OF RELATIVISTIC
EFFECTS

When relativity is considered, several additional terms need
to be added to the nonrelativistic electronic Hamiltonian
operator. Relativistic effects are all ultimately based on the
Dirac equation for a single electron in a potential.(38) For
multielectron atoms in the absence of external fields, the
Breit–Pauli Hamiltonian contains some additional terms
including,(39)

Ĥmv = −α2

8

N∑
i=1

p̂4
i (39)

Ĥd = α2

8

N∑
i

�2
i V̂ (40)

Ĥso = α2

2

 N∑
i

Z

r3
i

�̂i ·ŝi −
N∑

i �=j

(rij × pi )·(ŝi + 2ŝj )

r3
ij


(41)

in atomic units with the dimensionless fine-structure con-
stant,

α = µ0e
2c

2h
≈ 1

137
(42)

Note that 1/α is the speed of light in atomic units. The
‘mass–velocity’ term, Ĥmv, with p̂i = −i�i accounts for
the usual relativistic increase in mass of the electron with
velocity. This term causes the s-orbitals of atoms to shrink
in size because s electrons move rapidly as they get close to
the nucleus.(40) The Darwin term, Ĥd, causes a small shift in
the energy levels of an atom. However, the spin–orbit term,
Ĥso, is by no means a small correction for heavy atoms,
and can be included in the zeroth-order nonrelativistic
Hamiltonian.

The effects of mass–velocity, Darwin and spin–orbit
terms can be included in a relativistic effective core
potential.(34) In this case, the ab initio calculations give
improved results, even though only the nonrelativistic
electronic Schrödinger equation is used for the valence
electrons. Neglected additional terms include electron

spin–spin coupling, which is usually dominated by second-
order spin–orbit coupling for heavy atoms rather than true
spin–spin coupling.

Because the Breit–Pauli Hamiltonian is difficult to use in
practical calculations, the Douglas–Kroll transformation of
the Dirac equation is often preferred.(41,42) The spin–orbit
part of the Douglas–Kroll Hamiltonian has the same
form as equation (41) and the remaining terms (equivalent
to mass–velocity and Darwin terms) are responsible for
‘scalar’ relativistic effects. The inclusion of these scalar rel-
ativistic effects is necessary, for example, in the calculation
of reliable dissociation energies of diatomics such as CF.(43)

Spin–orbit coupling is generally included in ab initio
calculations through the Breit–Pauli spin–orbit operator,
Ĥso, equation (41). For molecules, a sum over atoms is
needed and �̂i is replaced by r̂i × p̂i in the first term on
the right-hand side. The second term on the right-hand side
is the ‘spin–other-orbit’ interaction. Given a set of good
wave functions for the electronic states of a diatomic, the
first-order energies,

E(1)
n = 〈ψn|Ĥso|ψn〉 (43)

are readily computed to give the spin–orbit splittings of
the spin components |2S+1��〉 of a given term. Spin–orbit
coupling (equation 41) can also couple spin components of
different 2S+1� terms, giving

E(1)
mn = 〈ψm|Ĥso|ψn〉 (44)

and in this case a larger matrix of all of the low-lying spin
components needs to be diagonalized.

Fleig and Marion(44) have carried out ab initio calcula-
tions on PtH and PtD to predict the spectroscopic properties
of the low-lying states. PtH has a 5d9 Pt configuration that
results in low-lying 2�+, 2�3/2, 2�1/2, 2�5/2, 2�3/2 spin
components from the d-hole (i.e., 5dσ, 5dπ and 5dδ states).
Wave functions for the spin-free system were derived from
a CASSCF-CI calculation. In the second step, diagonal
and off-diagonal spin–orbit matrix elements were computed
for the five electronic basis functions (two � = 1/2, two
� = 3/2, and one � = 5/2). Fleig and Marion also added
three additional terms(11) to their calculation, namely,

Ĥcorr = 1

2µr2
(L+S− + L−S+) − 1

2µr2
(J+S− + J−S+)

− 1

2µr2
(J+L− + J−L+) (45)

to account for spin-electronic, S-uncoupling and L-uncoup-
ling interactions, and diagonalized their matrices for each
value of the rotational quantum number J . The term values
for the calculations are compared with experiment(45) in
Table 5 for e parity.
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Table 5. Comparison of Calculated and Experimental Energy
Levels of PtD and PtD (in cm−1).

State PtH PtH PtD PtD
Calc.a Obs.b Calc.a Obs.b

v = 0 2�5/2 0 0 0 0
v = 0 2�1/2 1479 — 1488 —
v = 1 2�5/2 2298 2293 1650 1644
v = 0 2�3/2 3414 3254 3428 3243
v = 1 2�3/2 5452 5429 4897 4804
v = 0 2�3/2 11 626 11 608 11 632 11 606
v = 0 2�1/2 12 208 — 12 214 —
v = 1 2�3/2 13 812 13 832 13 201 13 201

aT. Fleig and C.M. Marian (1996) J. Mol. Spectrosc., 178, 1.(44)

bM.C. McCarthy, R.W. Field, R. Engleman, and P.F. Bernath (1993) J.
Mol. Spectrosc., 158, 208.(45)

10 CALCULATION OF LIFETIMES AND
TRANSITION DIPOLE MOMENTS

The radiative properties of allowed electronic transitions
are relatively easy to compute from given equations (32)
and (34) and reliable wave functions and potential energy
curves. For example, Bauschlicher et al.(46) have com-
puted the Einstein A values and radiative lifetimes for
various vibrational bands of the A6�+ − X6�+ transi-
tion of CrH. CrH is of interest in molecular astronomy,
in which it appears prominently in the spectra of substel-
lar objects called brown dwarfs. Brown dwarfs are cool
(1000–2000 K) objects that are smaller than stars but larger
than giant planets such as Jupiter.

The properties of the A6�+ and X6�+ states of CrH
were computed using the MCSCF-CI technique using
large basis sets and extensive electron correlation. Scalar
relativistic effects were included using the Douglas–Kroll
approach. The A–X transition dipole moment (Figure 5)
was then computed using various ab initio wave functions
and the potential energy curves.
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Figure 5. Transition dipole moment as a function of bond
distance for the A6�+ − X6�+ transition of CrH calculated at
various levels of theory [C.W. Bauschlicher, R.S. Ram, P.F.
Bernath, C.G. Parsons, and D. Galehouse (2001) J. Chem. Phys.,
115, 1312].(46)

The comparison between experiment and calculation for
CrH is given in Table 6. The calculated dissociation energy
(2.17 eV) of the ground state is slightly higher than the
experimental value (1.93(7) eV) and suggests that there
may be a small problem with the experimental value.(47)

The theoretical Einstein A value of the 0–0 band of the
A6�+ transition is calculated to be 1.20 × 10−6 s with an
estimated accuracy of 10%. The various A values can be
used to derive the abundance of CrH in brown dwarfs and
to model the spectral energy distribution function using
molecular opacity functions.

The calculation of transition dipole moments for forbid-
den transitions is more difficult. The starting point is also
a set of good electronic wave functions. The next step is
to calculate mixing of the spin components of the relevant

Table 6. Comparison of Experimental and ‘Corrected’ Ab Initio Calculations
of Spectroscopic Constants of CrHa.

Constant X-state X-state A-state A-state
calc. obs. calc. obs.

re(Å) 1.654 1.655 1.765 1.7865
D0(eV) 2.17 1.93(7) — —
ωe(cm−1) 1653.8 1656.05 1525.2 1524.80
ωexe(cm−1) 31.0 30.49 23.0 22.28
A00(s−1) — — 1.20 × 10−6 —

aC.W. Bauschlicher, R.S. Ram, P.F. Bernath, C.G. Parsons, and D. Galehouse (2001)
J. Chem. Phys., 115, 1312.(46)
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Figure 6. Calculated potential energy curves for the low-lying
electronic states of CH [after H. Hettema and D.R. Yarkony,
(1994) J. Chem. Phys., 100, 1998].(48)

electronic states using the Breit–Pauli spin–orbit Hamil-
tonian (equation 41) using first-order perturbation theory.
The transition dipole moment R(r) can then be com-
puted as for an allowed transition with these mixed wave
functions. Rotational interactions can be included, if nec-
essary. Hettema and Yarkony(48) computed the lifetime
of the a4�− state of CH. The relevant potential curves
(Figure 6) and wave functions were first computed with the
MCSCF-CI approach. The off-diagonal matrix elements of
the Breit–Pauli operator were computed for the a4�1/2,
a4�3/2, X2�3/2 and X2�1/2 spin components of the a and
X states. The mixed wave functions were then used to com-
pute the radiative lifetimes of 12, 10, and 8 s for the v = 0,
1, and 2 vibrational levels of the a4�− state, using the
ab initio potential surface to obtain the needed vibrational
wave functions. Einstein A values for individual rovibronic
transitions were also computed.

11 CALCULATION OF BOND ENERGIES,
IONIZATION POTENTIALS, AND
ELECTRON AFFINITIES

The calculation of thermochemical properties is an impor-
tant application of modern quantum chemistry. The most
important quantity is the enthalpy (‘heat’) of formation
�H

◦
f at standard temperature (298.15 K) and pressure

(1 bar) of a molecule from its constituent elements in
their standard states. For a diatomic molecule, the enthalpy
of formation is related to the dissociation energy of the
gaseous diatomic AB via

D
◦
(AB) = �H

◦
f [A(g)] + �H

◦
f [B(g)] − �H

◦
f [AB(g)]

(46)

The heats of formation of the gaseous atomic elements
are thus needed to convert dissociation energies into heats
of formation. Spectroscopic dissociation energies, D0, are
effectively 0 K values, however, and need to be converted to
298 K using enthalpy functions (see Committee on Data for
Science and Technology (CODATA) values)(49) although

D
◦
(298 K) = D0(0 K) + 3

2RT (47)

is a good approximation.
The calculation of dissociation energies, along with ion-

ization energies and electron affinities, has been the target
of several methods such as the G1, G2, G3 (G for Gaus-
sian) series of Pople et al.(50) and the ‘complete basis set’
(CBS) methods of Petersson et al.(51) These methods are
based on relatively modest ab initio calculations with sev-
eral semiempirical corrections added to improve accuracy.
They are aimed largely at polyatomic molecules of the first
and second rows of the periodic table, but use diatomics
as tests. The W1 and W2 (W for Weizmann) schemes of
Parthiban and Martin(52) use a higher level of theory, and
are free of parameters derived from experiment.

For a diatomic, the dissociation energy, ionization
energy, and electron affinity are best computed from the
appropriate total energies calculated at a high level of the-
ory with as many corrections as possible. The W2 scheme
of Martin et al.,(52) for example, includes geometries at
the CCSD(T)/cc-pVQZ+1 level of theory, a correction for
basis set incompleteness, a correction for some of the miss-
ing correlation energy, a scalar relativistic correction, a
spin–orbit correction, and a correction for anharmonicity
for the zero-point energies. The W2 theory(52) produces
heats of formation accurate to 0.23 kcal mol−1, electron
affinities to 0.012 eV, and ionization potentials to 0.013 eV
for diatomics, and small polyatomics of the first and second
rows of the periodic table.

Calculations of thermochemical properties for diatomics
containing transition elements, lanthanides, and actinides
are more difficult, but the use of relativistic core potentials
gives useful values. Indeed, for most diatomics containing
heavy elements, experimental values are generally unavail-
able. A complete set of thermochemical quantities can be
computed using statistical mechanics from ab initio total
energies, bond lengths, and vibrational frequencies for the
low-lying electronic states. The rotational, vibrational, and
electronic contributions to the partition functions can be
computed from the calculated spectroscopic properties of
the electronic states. For example, Jug et al.(53) computed
heat capacities (Cp) and entropies (S) for metal halides.
This ab initio approach to thermochemistry is much more
reliable than the use of ‘estimated’ spectroscopic constants
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(in, for example, the JANAF tables)(54) when experimental
data is unavailable.

12 CONCLUSION

The ab initio calculation of molecular properties associ-
ated with the electronic transitions of diatomic molecules
has become an important partner in the interpretation of
spectra. Experimental measurements of electronic spec-
tra, particularly for systems containing transition metals,
are often incomplete. For example, we have recorded the
infrared electronic emission spectra of the new molecules
RuN(55) and OsN.(56) Transition metal nitrides are of inter-
est in the fixation of nitrogen in industrial, inorganic, and
biological systems. Without ab initio calculations of the
properties of the low-lying states by Liévin,(55,56) we would
not have been able to interpret our spectra. The calculations
demonstrated, for example, that although RuN and OsN are
isovalent (Fe, Ru, and Os are in group 8 of the periodic
table), RuN has a ground X2�+ state, while OsN has a
ground X2�5/2 state. Even though ab initio calculations of
diatomics have achieved ‘spectroscopic accuracy’ only for
systems such as H2, modern calculations can give a reliable
‘big picture’ for the electronic structure. Such information is
an invaluable guide to the interpretation of observed spec-
tra and as a supplement to measurements when no other
information is available.

NOTE

[1] LeRoy, R.J. (2001) Energies, Intensities and Potentials:
Concepts and Tools in Spectroscopy, unpublished lec-
ture notes.
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