Difference between revisions of "NH"
From DoyleGroup
(→People) |
|||
Line 1: | Line 1: | ||
== About the NH experiment == | == About the NH experiment == | ||
− | [[File:NH_magnet.jpg|thumb|500px| | + | [[File:NH_magnet.jpg|thumb|500px|N/NH Co-trapping : 1st Generation]] |
− | We | + | We cooled nitrogen atoms and NH molecules to 500mK using helium vapor. The species fell into a 4T deep magnetic trap created by two superconducting coils in an anti-Helmholtz configuration. We studied the collisions of the atoms and molecules with helium to elucidate spin relaxation mechanisms. The helium buffer gas can be extracted, to leave atoms and molecules thermally isolated from their environment. Future work will include studies of interatomic and intermolecular collisions and the development of techniques to increase the phase space densities of trapped species. |
== People == | == People == |
Revision as of 13:12, 10 November 2010
About the NH experiment
We cooled nitrogen atoms and NH molecules to 500mK using helium vapor. The species fell into a 4T deep magnetic trap created by two superconducting coils in an anti-Helmholtz configuration. We studied the collisions of the atoms and molecules with helium to elucidate spin relaxation mechanisms. The helium buffer gas can be extracted, to leave atoms and molecules thermally isolated from their environment. Future work will include studies of interatomic and intermolecular collisions and the development of techniques to increase the phase space densities of trapped species.
People
- Yat Shan Au
- Eunmi Chae
- Colin Connolly
- Hsin-I Lu
Recent graduates:
- Wes Campbell (Now as postdoc at Maryland)
- Matt Hummon (Now a postdoc at Boulder)
- Edem Tsikata (Now a postdoc at JPL)
Publications
- Cold N+NH Collisions in a Magnetic Trap. M. Hummon, T. Tscherbul, J. Klos, Hsin-I Lu, E. Tsikata, W. Campbell, A. Dalgarno, J. Doyle. http://arxiv.org/abs/1009.2513
- Collisional properties of cold spin-polarized nitrogen gas: theory, experiment, and prospects as a sympathetic coolant for trapped atoms and molecules T.V. Tscherbul, J. Klos, A. Dalgarno, B. Zygelman, Z. Pavlovic, M.T. Hummon, H. Lu, E. Tsikata, and J.M. Doyle. accepted for publication, Phys. Rev. A (2010)
- Mechanism of Collisional Spin Relaxation in Triplet-Sigma Molecules, W.C. Campbell, T. V. Tscherbul, H.-I Lu, E. Tsikata, R. V. Krems, and J.M. Doyle. Phys Rev Lett 102, 013003 (2009).
- Time-Domain Measurement of Spontaneous Vibrational Decay of Magnetically Trapped NH, W.C. Campbell, G.C. Groenenboom, H. Lu, E. Tsikata, J.M. Doyle. Phys Rev Lett 100, 083003 (2008).
- Magnetic trapping of atomic nitrogen (^14N) and cotrapping of NH (X-triplet-Sigma-), M.T. Hummon, W.C. Campbell, H. Lu, E. Tsikata, Y. Wang, and J.M. Doyle, Phys Rev A 78, 050702(R) (2008).
- Magnetic Trapping and Zeeman Relaxation of NH (X-triplet-Sigma), W.C. Campbell, E. Tsikata, H. Lu, L.D. van Buuren, and J.M. Doyle. Phys Rev Lett 98, 213001 (2007).
- Buffer-gas cooling of NH via the beam loaded buffer-gas method, D. Egorov, W.C. Campbell, B. Friedrich, S.E. Maxwell, E. Tsikata, L.D. van Buuren, J.M. Doyle. Eur
- Buffer-gas cooling of atomic and molecular beams. Dima Egorov, Thierry Lahaye, Wieland Schöllkopf, Bretislav Friedrich, and John M. Doyle. Phys Rev A 66, 043401 (2002)